Signal Recovery in Compressed Sensing via Universal Priors
نویسندگان
چکیده
We study the compressed sensing (CS) signal estimation problem where an input is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the observed signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of a stationary ergodic signal source are estimated simultaneously with the signal itself. We focus on a maximum a posteriori (MAP) estimation framework that leverages universal priors such as Kolmogorov complexity and minimum description length. We provide theoretical results that support the algorithmic feasibility of universal MAP estimation through a Markov Chain Monte Carlo implementation. We also include simulation results that showcase the promise of universality in CS, particularly for low-complexity sources that do not exhibit standard sparsity or compressibility.
منابع مشابه
Complexity-Matching Universal Signal Estimation in Compressed Sensing
We study the compressed sensing (CS) signal estimation problem where an input signal is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the input signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملCompressed Sensing via Universal Denoising and Approximate Message Passing
We study compressed sensing (CS) signal reconstruction problems where an input signal is measured via matrix multiplication under additive white Gaussian noise. Our signals are assumed to be stationary and ergodic, but the input statistics are unknown; the goal is to provide reconstruction algorithms that are universal to the input statistics. We present a novel algorithm that combines: (i) the...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملData-Driven Sparse Sensor Placement
Optimal sensor placement is a central challenge in the design, prediction, estimation, and control of high-dimensional systems. High-dimensional states can often leverage a latent low-dimensional representation, and this inherent compressibility enables sparse sensing. This article explores optimized sensor placement for signal reconstruction based on a tailored library of features extracted fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1204.2611 شماره
صفحات -
تاریخ انتشار 2012